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The dynamic models of the calorimetric system used for the reconstruction of thermokinetics 
were evaluated on the basis of the multi-body theory. Special attention was given to the 
fundamentals of each of the methods and the resulting consequences for the range of application 
of these methods (problem of initial conditions, localization of heat sources and temperature 
sensors, etc.). 

The total heat effects and the thermokinetics of  a heat process examined by 
means of a calorimeter are always determined by measuring a quantity directly in 

the calorimeter, e.g. temperature. Let us consider heat power W(t) as the input 
function, and temperature O(t) as the output function. Determination of  the 
function W(t)  on the basis of  O(t) is equivalent to defining an operator  which 
transforms the values of  O(t) into the values of  W(t). There are now several 
numerical and a n a l o g  methods for reconstructing the thermokinetics [1]. 

Implementation of the international program [2, 3] permitted a comparison for the 
first time of  results obtained by these methods. A marked improvement  has 

occurred in this field. 

Application of such numerical methods allows reproduction of  the thermokine- 
tics in a manner  as if the experimental thermal curve were obtained in a calorimetric 
system with a time constant 10(~200 times smaller than that for the thermal inertia 
of  this calorimetric system. The results obtained by using various methods differ 
little between each other, encouraging a more general analysis of  the conditions for 

application of these methods. This analysis is based on the multi-body theory [4]. 

I The multi-body theory 

The multi-body theory is based on distinguishing in each of the calorimetric 
systems a system of bodies characterized by precisely defined properties and 
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parameters. Each of the bodies has a uniform temperature throughout its volume 
and its heat cap/~city is constant. The temperature gradients occur only in the media 
which separate these bodies, and the heat capacities of the media are taken to be 
negligibly small. The amount of heat exchanged between the bodies through these 
media is proportional to the difference between their temperatures. The 
proportionality factors are the corresponding heat loss coefficients, and a heat 
source as well as a temperature sensor can be located in each of them. The system of 
bodies is placed in an environment having a constant temperature, which is treated 
as a reference temperature. With these assumptions, the overall heat balance 
equation takes the form [4]: 

N 

KjdO~(t)+Go~Oj(t)dt+ ~ G~j[Oj(t)-Oi(t)]dt = dOj(t) (1.1) 
i = l  

j = l ,  2 . . . .  , N  

where N = number of distinguished bodies, Kj = heat capacity of body j, 
G o = heat loss coefficient between body j and body i, Got = heat loss coefficient 
between body j and the environment, Oj(t) = function describing the change in 
temperature of bodyj  at time t with reference to the environment temperature, and 
dQj(t) = amount of heat generated in b o d y j  during time dt. 

The system of differential equations (1.1) normalized by the dimension of 
temperature takes the following form: 

N 
Tj~dOj(t) + Oj(t) = ~ kjfl,(t) + cjfj(t) (1.2) 

i=1 

i~j j = 1, 2 . . . .  , N 

The system of differential equations (1.2) is called the equations of dynamics of the 
calorimetric system. The following concepts have been employed in the derivation 
of (1.2). 

The overall heat loss coefficient, Gi, for each of the distinguished bodies was 
described as 

N 

Gj -- ~ Gj, j = 1, 2 , . . . ,  N (1.3) 
i=0 

The overall heat loss coefficient takes into account the heat exchange between body 
j and the environment, as well as the heat exchange between this body and other 
bodies. 

The time constant T~ of body j  is defined as the ratio of heat capacity K~ to the 
overall heat loss coefficient Gj of this body: 

T~ --- Kj/Gj j = 1, 2 , . . . ,  N (1.4) 

The time constant Tj is a measure of the inertia of the body in the system of bodies. 
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The interaction coefficient kj~ is defined as the ratio of the heat loss coefficient Gi~ 
to the overall heat loss coefficient G j: 

kji = G J G j ;  i = O, 1 . . . . .  N;  j = 1, 2 . . . . .  N;  iv~j (1.5) 

and is a measure of the heat interaction of b o d y j  with body i with respect to the 
interactions of the remaining bodies and of the environment on body j. The value of 
the interaction coefficient kj~ has an important influence on the inertia of the 
calorimetric system, and permits a description of  the structure of the dynamic 
model for the examined calorimetric system. 

The forcing function fj(t) is defined as follows: 

1 dQi(t ) _  1 Wj(t) j =  1 , 2 , . . . , U  (1.6) 
f j ( t )  - cjGj dt  cjGj 

We may conclude from (1.6) that the course of the generated heat power Wj(t) is 
proportional to the forcing functionfi(t), which has the dimension of temperature. 
Coefficients cj are defined by 

cj = I D I / I D j j l  j = 1, 2 . . . . .  N (1.7) 

where ID I is the determinant of matrix D : 

1 -k12 -k in  
- k 2 1  1 --k2N 

D = 

- k~r 1 - k N 2  

(18) 

and [Djj I is the corresponding minor of this matrix. Coefficients cj are dimensionless 
and are chosen so that the rise in temperature Oj(t) in a steady-state (in the state of 
stationary heat exchange) is equal to the increase in the value of  the forcing function 
fj(t). The coefficients c~ defined in this way are particularly useful in application of 
the superposition principle to the examined body-system. 

,The system of differential equations (1.2) may be presented in a matrix form as 
follows: 

T. 0(z) + D.  O(t) = C . f ( t )  (1.9) 

where matrix D is given by (1.8) and matrices Tand C are diagonal matrices of  the 
form 
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T =  

TI 0. 0 ci 0 0 
0 /'2 0 0 c2 0 

0 0 

C = 

0 0 

�9 o 

�9 o 

I g 

�9 o C N 

The state vector O(t) and the forcing vectorf( t)  are defined as 

0(0  = 

01(0 
02(t) 

ON(t) 

f ( t )  = 

A(t)  
'f2(t) 
'io 

fN(t) 

and O(t) is treated as a derivative of state vector O(t) with respect to time t. 

2. Calorimetric models 

Let us use the relationships given above to characterize the dynamic models 
a~pplied for reconstruction of the thermokinetics. The method based on Eq. (1.1) is 
called the multi-body method [5]. This equation may be applied for reproduction of 
the thermokinetics when the number of bodies, their mutual localization, 
parameters Kj, Gji and Goj of the calorimetric system and the initial temperature 
conditions are known�9 The dependences which form the basis of the multi-body 
method also include the finite element method [6, 7], the method of lumped 
parameters [8-11] and the techniques of analog and numerical correction [12-15]. 
For a single-body case (j= 1), Eq. (1.1) takes the form of the heat balance equation 
of a simple body--known in the calorimetric literature as the Tian-Calvet equation 
[161. 

A group of methods exists which "a priori" use a model of a calorimetric system 
in the form of a convolution function. Let us derive equations which are 
mathematical models of these methods. Laplace transformation of Eq. (1. l) in its 
matrix form (1.9) gives 

(s" T + D ) .  O(s) = C ' f ( s )+  T. Oo (2.1) 

where s = Laplace operator, 0o = initial state vector (initial temperature condition 
in the bodies), and O(s) and f ( s )  = Laplace transforms of state vector O(t) and 

J. Thermal Anal. 32. 1987 



Z1ELENKIEWICZ, MARGAS: DYNAMIC MODELS OF THERMOKINETICS 177 

forcing vectorf(t), respectively. The solution of Eq. (2.1) in the complex domain s is 

O(s) = H(s).  C" f ( s )  + H(s).  T .  0 o (2.2) 

where 
H(s) = (s. T+ O ) - '  (2.3) 

is the transfer matrix; in the frequency domain 09 the solution is 

O(joa) = H(fio) - C" f qo~) + Hqo~) . T" 0 o (2.4) 

and in the time domain t the solution is 

t 

O(t) = S H ( t -  z). C ' f ( z )  dr + H(t)" T. Oo (2.5) 
0 

where H(t) is the matrix of fundamental solutions. Assuming that 

f ( t )  = ~ f ( n h ) 3 ( t - n h )  (2.6) 
n = O  

where h = sampling period and 6(t) = Dirac function, (2.5) can be rewritten as 

O(t) = ~ n ( t -  nh)" C. f (nh)  + H(t).  T. Oo (2,7) 
n = O  

Assuming, additionally, that the heat source is located in one body only (for 
example, in body r), that the temperature is measured in one body only (for 
example, in body j) and under the condition of zero initial temperature, Eqs (2.4), 
(2.5) and (2.7) define the mathematical model for reconstruction of the 
thermokinetics. Equation (2.4) becomes 

O i(jog ) = H j,(jo~ )cJ,(  flo ) (2.8) 

representing the mathematical model of the harmonic analysis method [17]; Eq. 
(2.5) becomes 

Oj(t) = i H j , ( t -  z)c,f~(~) dr (2.9) 
0 

representing the mathematical model of the dynamic optimization method [18]; 
and Eq. (2.7) becomes 

Oj(t) = ~ Hjr(t-nh)c,f~(nh ) (2.10) 
n = O  

representing the mathematical model of the thermal curve interpretation method 
[19]. 

Techniques using analog and numerical correction of the dynamic properties of 

J. Thermal Anal. 32, 1987 



178 ZIELENKIEWICZ, MARGAS: DYNAMIC MODELS OF THERMOKINETICS 

the system, compensating transmittance zeros and poles, are also treated as 
component methods for reconstruction of the thermokinetics. According to 
relationship (2.3), the transmittance Hj,(s) has the form 

(Lps+ 1) 
p=l  

Hjr(s) = Sir tr (2.11) 
I-I ( M l s +  1) 
I=1 

where S j' = gain factor. Thus, the dependence between the generated heat effect 
fr(t) and temperature changes0i(t ) can be written as 

Oj(s) = Hj,(s)c,f,(s) (2.12) 

The following set of differential equations is assigned to (2.12) in the time domain: 

MlOj(t) + Oj(t) = x1(t) (2.13) 

Mls  ) = xl(t); 1 = 2, 3 . . . .  , N (2.14) 

L l)~l(t) + yl(t)  = XN(t) (2.15) 

L ~ v ( t ) + y p ( t )  = Yp-l(/); P = 2, 3 . . . .  , m (2.16) 

y , ( t )  = SJ'c,f,(t) (2.17) 

where xl(t),  x2(t) . . . . .  XN(t), yl(t),  y2(t) i l . . ,  ym(t) = state variables. According to 
dependences (2.13) and (2.14), the poles of  transmittance in the numerical 
correction method [14, 20] are compensated, and on the basis of Eqs (2.15) and (2.16) 
the zeros of transmittance are compensated. In the analog correction method [12, 
13, 15], the zeros and poles of the transmittance are compensated by means of 
operational amplifiers. The form of the set of Eqs (2.13)-(2.17) corresponds to the 
method of state variables [21], and variables {xx(t)}, {yp(t)} are canonic variables. 
Initial conditions for state variables {x~(t)}, which are obtained by compensating 
poles, can be calculated by an iterative method on the basis of the temperature 
changes in the calorimetric system. The question arises as to what initial conditions 
must be taken into account for state variables {yp(t)}, which are obtained by the 
compensation of zeros, in order to reconstruct the course of the thermokinetics 
uniquely. The above discussion shows that in a general case there can be m degrees 
(degree of numerator of transmittance) of indetermination in the reconstruction of 
the thermokinetics. 
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3 Kinetic and frequency limits 

It results from a detailed solution of Fourier's heat conduction equation that the 
impulse response Hjr(t ) of the calorimetric system is described by an infinite sum of 
exponential functions: 

H~,(t) = ~ o. e -b"' j,,, (3.1) 

Thus, an ideal model for reconstruction of the thermokinetics would be a model of 
an infinite order. This assumption is accepted as the basis of methods using the 
convolution function. Mathematical models with an assumed order of the 
differential equation give poorer results. Thus, a paradox of obtaining practically 
identical results of reconstructing the thermokinetics by means of various methods 
exists [22]. 

This is due to the compromise between the available information and the 
possibility of applying it. The harmonic analysis method can be given as an example 
of this. In this method the transmittance is obtained numerically using the Fast 
Fourier Transform. This procedure uses N = 2" points, where n = 10, 11, 12, and 
N = 1024, 2048, 4096, respectively. The number of data used for calculations must 
cover the whole interval of time from "initial zero" to "final zero" of the 
temperature calorimetric response, The discrete measurement of temperature limits 
the upper bounds of frequency which can be applied for reconstruction of the 
thermokinetics. The value of this frequency, vsh, resulting from Shannon's theorem 
is a function of the sampling period and can be expressed by the relation v,h = 1/h 
(v = co/2n). It is therefore impossible to use the complete"spectrum of the 
frequency. There also exists a boundary frequency vp: 

] H(]w)l . . . . .  noise amplitude 
(3.2) 

IH(/~o)lv=o maximum amplitude of thermogram 

which is related to the measurement noise. The boundary frequency vp is the second 
limitation of the frequency spectrum, which can be applied in reconstruction of the 
thermokinetics for a given calorimetric system, and vp< Vsh. 

The high precision of calorimetric measurements today permits a less strict 
description of the calorimetric system itself, The comparison of reconstructions of 
the thermokinetics obtained with the multi-body method and with other methods 
shows the convergence of the results [3] when the calorimetric system is described by 
a linear differential equation with constant coefficients of the third to sixth order. 
Conclusions may be drawn, too, about some of the limitations of these methods. 
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4 Calibration of  the calorimeter 

The multi-body method and the other methods based on heat balance equations 
involve modelling of .the process by a set of ordinary differential equations with 
coefficients which are functions of the physical parameters of the calorimetric 
system. When the body configuration and the mutual localization of the heat source 
and the temperature sensor are changed, it is possible to introduce corresponding 
changes in the equations describing the model on the basis of which the 
thermokinetics and the integral heat effect of the examined process are determined. 

In the methods based on the "black box" notion (convolution function), it is 
assumed that during the calibration, as well as during the calorimetric measure- 
ment, we are dealing with the same dynamic system, i.e. with a time-invariant 
system. This assumption is not always true, and may sometimes introduce errors in 
reconstruction of the thermokinetics [23]. At certain positions of the heat source 
and temperature sensor, under particularly unfavourable conditions of measure- 
ment, a paradox may appear where reconstruction of the thermokinetics requires 
some information about the unknown heat power being reconstructed. 

This whole discussion emphasizes the great importance of a proper calibration of 
the calorimetric system. The equivalence of the heat source during the calibration 
and the measurement proper is a necessity; otherwise, even the best reconstruction 
methods may lead to false results. 

5 Initial state and initial conditions 

In the majority of reconstruction methods (methods based on the conyolution 
function, analog and numerical correction), zero initial conditions for the measured 
temperature of the calorimetric system are assumed. This assumption in some cases 
makes thermokinetic reconstruction difficult or impossible. It will be proved now 
that it is necessary to derive a relationship between the initial state of the 
calorimetric system and the initial conditions for the temperature of the body. 

The set of differential equations (1.2) has an equivalent N-th-order equation: 

dl0j(t) ,, &f,( t)  
A 1 - =  c,  ~ a'~ - ~ ,  m < N  (5.1) 

t=o dt 1 v=o 

when the heat effect is generated in body r and the temperature changes in bodyj  are 
measured. Applying the Laplace transformation to Eq. (5. I), we obtain 

A ; z O j ( s )  _ , l -  1 -~a~q~ v jo  = c,  aSp'sPf,(s) - s p -  
I=1 q=O 
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where 0(fld = value of the q-th derivative of temperature Oj(t) with respect to time at 
the initial moment, �9 -'(k) and J ,o = value of  the k-th derivative of  the forcing function 
f,(t) with respect to time at the initial moment. Relationship (5.2) can be written in 
the form 

N m . N l - 1  

o r  

p - 1  
- c, a~" ~ s P-  l - k  f(k'JrO 

p = 0  k = 0  

(5.3) 

N 

0i(s) = H~,(s)c, fi(s)+ ~ Hi,(s)Tfl, o (5.4) 
i=O 

where Hj,(s) is determined by (2.4) and 

nji(s)TiOio = At Z st-X-~a(q)+ 
i=O / = 0  q=O vJO 

(5.5) 
P-~ -~c~k)'~ / ,~' -c ,  ~ a~" ~ s p-~ Azs z 

p=o k=O ~ '~  

According to (2.2), the Laplace transform O~(s) of the temperature Oj(t) for body j  
has the form 

N N 
Oj(s) = ~ H~i(s)c,f~(s)+ ~ Hj,(s)TiO,o (5.6) 

i=1  i=1  

In the special case when the heat effect is generated only in body r, we have 

N 

- o j ( s )  --  I - l j , ( s ) c , f , ( s )  + Y~ Hj,(~)T,0,o (5.7) 
i=1  

It can readily be seen that (5.4) and (5.7) are identical. 
To find the relationship between the initial conditions ~ )  (n = 0, 1 . . . . .  N) for 

temperature Oj(t) and the vector _0 o of the initial state of the calorimetric system, we 
can write Eq. (1.9) for the initial moment in the form 

r'_0g"+~)+D'_0g") = c . s g  "), n = 0, 1, 2 . . . .  (5.8) 
o r  

-0ton+l)+ T-I"D'_0~o n) = T-I"C'f~o'), n = 0, 1, 2 . . . .  (5.9) 

where _0~o '~ and f~o "~ are the values of the n-th-order derivatives with respect to time of 
the state vector _0(t) and the forcing vector f ( t )  at the initial moment, respectively. 
Applying the Z-transformation [24] to Eq. (5.9), we obtain 
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( I+  z-  1. T - 1. D)" _0o(Z ) = _0(0 ~ + z-  1. T - 1. C" fo(Z) 

where I is a unit matrix. From (5.10), we have 

O_o(Z) = ( I +  z -  x. T - 1. O ) -  1.0_(0 o) + 

(5.1o) 

(5.11) 
+z  - l " ( I + z  -1" T - I ' D ) - 1 "  T - I " C "  fo ( z )  

Applying the inverse Z-transformation to (5.11), we obtain 

O(n) = (__ | )n . ( T - 1  . D ),  . _O(oO) + 

+ ~ ( -  l) k - x ' ( T - ' . D )  k - l . T - x . C . f ( o  "-k) (5.12) 
k=l  

n =  1,2 . . . . .  N - 1  

Relationship (5.12) links together the initial conditions _0(0 ") for the temperature of 
any body with vector _0 o of  the initial state for a system of  bodies and the initial 

�9 �9 (k) f, con&tlonsfo or the forcmg vectorf(t) .  This relationship reveals that zero initial 
conditions for a system of bodies do not directly imply zero initial conditions for 
the temperature of each of these bodies. These conditions depend, however, on the 
initial conditions of the generated heat effect. 

6 Conclusions 

The comparison of methods for reconstructing the thermokinetics shows that the 
multi-body method including the physical parameters of the calorimetric system is 
better than other methods and techniques based on the assumption that the 
calorimeter can be treated as an inertial object described by a higher-order 
differential equation without considering its physical parameters. This treatment 
often permits elimination of the effect of  changing the dynamic properties of a 
calorimetric system as well as the initial conditions. This also refers to calorimetric 
systems in which the heat loss coefficient is a function of temperature (free 
convection, radiation), i.e. when the capacity of the calorimetric vessel changes. 
Approximate solutions are applied in these cases. 

It is shown that several of the models used for reconstruction of the 
thermokinetics are equivalent, if appropriate conditions are fulfilled. The multi- 
body model and the convolution function model are equivalent if the initial state of  
the calorimetric system is zero. If, instead of a continuous model, we use its discrete 
approximation, several differences in the reconstruction of the thermokinetics can 
occur, due to the approximation and choice of the sampling period. The other 
sources of differences in reconstructing the thermokinetics may be the quality of the 

J. Thermal  Anal. 32, 1987 



ZIELENKIEWICZ, MARGAS: DYNAMIC MODELS OF THERMOKINETICS 183 

experimental data (measurement precision, noise, drift of zero) and the choice of a 
model which does not completely describe the process taking place in the 
calorimetric system. 
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Zusammenfassung -.- Die dynamischen Modelle des zur Rekonstruktion der Thermokinetik benutzten 
kalorimetrischen Systems werden auf der ,,multi-body"-Theorie basierend bewertet. Besondere 
Beachtung wird den Grundlagen jeder dieser Methoden und den sich ffir die Anwendung ergebenden 
Konsequenzen (Problem der Anfangsbedingungen, Anordnung der Wfirmequellen und 
Temperaturffihler usw.) gewidmet. 

Pe31oMe - -  Ha ocaoae Teoprm Mnornx Te~ onpe~e.aenb~ ,m, maMnqecKne Mo,ae.rm ra.noprIMeTpnqect<ofi 
CnCTeMbi, HcnoJlb3yeMo~ ~J~la 13ocnpovl3Be,~esHa TepMOrnHeTnrt,l. Oco6oe BHrtManne y~eaeno OCHOBaM 
Kax~oro MeTO~ta n KoueqnblM BblBOJ1.aM OTH Cl4Te~qbHO o6~acxn npnMenenna 3TnX MeTO~Oa 
(IlpO6.rlCMa I,ICXO21HblX ycYlOBl, lfi, MeCTOHaXOX~teHH~I TenJ1oablX ncxo'maroa n TeMnepaTypoblx 
~a'l'tuKo~ H ~tpyl'ue) 
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